Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials
نویسنده
چکیده
In this paper it is shown that unique solutions to the relativistic Boltzmann equation exist for all time and decay with any polynomial rate towards their steady state relativistic Maxwellian provided that the initial data starts out sufficiently close in L∞ . If the initial data are continuous then so is the corresponding solution. We work in the case of a spatially periodic box. Conditions on the collision kernel are generic in the sense of Dudyński and Ekiel-Jeżewska (Commun Math Phys 115(4):607–629, 1985); this resolves the open question of global existence for the soft potentials.
منابع مشابه
Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials
We consider the spatially homogeneous Boltzmann equation for regularized soft potentials and Grad’s angular cutoff. We prove that uniform (in time) bounds in L((1 + |v|)dv) and H norms, s, k ≥ 0 hold for its solution. The proof is based on the mixture of estimates of polynomial growth in time of those norms together with the quantitative results of relaxation to equilibrium in L obtained by the...
متن کاملUltra- Relativistic Solitons with Opposing Behaviors in Photon Gas Plasma
We have studied the formation of relativistic solitary waves due to nonlinearinteraction of strong electromagnetic wave with the plasma wave. Here, our plasma isrelativistic both in temperature and in streaming speed. A set of equations consisting ofscalar and vector potentials together with a third order equation for the enthalpy inphoton gas plasma is obtained analytic...
متن کاملUniqueness of Bounded Solutions for the Homogeneous Landau Equation with a Coulomb Potential
f0(v) log f0(v)dv for all t ≥ 0. Assume that in a dilute gas or plasma, particles collide by pairs, due to a repulsive force proportional to 1/r, where r stands for the distance between the two particles. Then if s ∈ (2,∞), the velocity distribution solves the corresponding Boltzmann equation [14, 15]. But if s = 2, the Boltzmann equation is meaningless [14] and is often replaced by the Landau ...
متن کاملL Stability for the Vlasov-poisson-boltzmann System around Vacuum
Based on the global existence theory of the Vlasov-Poisson-Boltzmann system around vacuum in the N -dimensional phase space, in this paper, we prove the uniform L1 stability of classical solutions for small initial data when N ≥ 4. In particular, we show that the stability can be established directly for the soft potentials, while for the hard potentials and hard sphere model it is obtained thr...
متن کاملar X iv : 1 10 6 . 15 79 v 1 [ m at h . A P ] 8 J un 2 01 1 LARGE - TIME DECAY OF THE SOFT POTENTIAL RELATIVISTIC BOLTZMANN EQUATION IN R
For the relativistic Boltzmann equation in R x , this work proves the global existence, uniqueness, positivity, and optimal time convergence rates to the relativistic Maxwellian for solutions which start out sufficiently close under the general physical soft potential assumption proposed in 1988 [13].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010